Institute for Integrated Cell-Material Sciences, Kyoto University (iCeMS) iCeMS

[Nat Nanotechnol] DNA Motor Programmed to Navigate a Network of Tracks

January 23, 2012

Kyoto, Japan -- Expanding on previous work with engines traveling on straight tracks, a team of researchers at Kyoto University and the University of Oxford have successfully used DNA building blocks to construct a motor capable of navigating a programmable network of tracks with multiple switches. The findings, published in the January 22 online edition of the journal Nature Nanotechnology, are expected to lead to further developments in the field of nanoengineering.

The research utilizes the technology of DNA origami, where strands of DNA molecules are sequenced in a way that will cause them to self-assemble into desired 2D and even 3D structures. In this latest effort, the scientists built a network of tracks and switches atop DNA origami tiles, which made it possible for motor molecules to travel along these rail systems.

"We have demonstrated that it is not only possible to build nanoscale devices that function autonomously," explained Dr. Masayuki Endo of Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS), "but that we can cause such devices to produce predictable outputs based on different, controllable starting conditions."

The team, including lead author Dr. Shelley Wickham at Oxford, expects that the work may lead to the development of even more complex systems, such as programmable molecular assembly lines and sophisticated sensors.

"We are really still at an early stage in designing DNA origami-based engineering systems," elaborated iCeMS Prof. Hiroshi Sugiyama. "The promise is great, but at the same time there are still many technical hurdles to overcome in order to improve the quality of the output. This is just the beginning for this new and exciting field."

Acknowledgements: This work was supported by the Engineering and Physical Sciences Research Council (EP/G037930/1), the Clarendon Fund, the Oxford-Australia Scholarship Fund, CREST of JST, and a Grant-in-Aid for Science Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.


Publication information

Extenal LinkA DNA-based molecular motor that can navigate anetwork of tracks

Shelley F. J. Wickham, Jonathan Bath, YousukeKatsuda, Masayuki Endo, Kumi Hidaka, Hiroshi Sugiyama, Andrew J. Turberfield

Nature Nanotechnology | DOI:10.1038/NNano.2011.253 | Published January 22, 2012


Related link

DNA Engine Observed in Real Time Traveling Along Base Pair Track (February 7, 2011)


Media coverage

Printer Friendly     

Back to Top

HOME > Public Relations Office: Topics / News Releases > [Nat Nanotechnol] DNA Motor Programmed to Navigate a Network of Tracks
Copyright © 2010 Institute for Integrated Cell-Material Sciences, Kyoto University. All rights reserved.