京都大学基金「iCeMS基金」へのご寄付のお願い

ホップ ステップ アイセムス 私たちと一緒に未来を追いかけてみませんか

京都大学アイセムスでは、研究者たちが日々、未知の世界 に挑んでいます。常識にとらわれず、「おもしろい」と感じ たことを信じて探求する――その小さな好奇心が、やがて 世界を変える発見につながります。

たとえば、北川教授が小さな孔が無数に空いた金属有機 構造体 (MOF) を発表した当初、多くの研究者は「そんな ものは壊れて機能しない」と、信じませんでした。しかし北 川教授はデータを信じ、粘り強く研究を続け、いまでは環

境やエネルギー問題などを解く鍵となる世界的な研究分野 の礎となっています。

基礎研究はすぐに役立つとは限りませんが、真理を追い求 める一歩一歩が未来を育てます。私たちは、こうした挑戦 を続ける研究者の活動を支える仲間を募集しています。私 たちの挑戦の先に広がるまだ見ぬ景色を、一緒に追いかけ ませんか。

ご寄付の 活用方法 人材育成: 若手研究者の養成・海外派遣

研究支援: MOF に関わる研究の促進、融合研究推進のサポート 社会貢献:研究成果の情報発信、MOF技術の社会実装の推進

ご厚意への 感謝

・感謝状の進呈

・芳名録への掲載(ご希望の方)

・北川教授 直筆サイン入り色紙の進呈(個人で100万円以上のご寄付をいただいた方)

ご寄付の 特典

京都大学へのご寄付は、法人税法、所得税法による税制上の優遇措置が 受けられます。詳しくは京都大学基金のウェブサイトをご覧ください。

ご寄付方法

ウェブサイトから

京都大学基金 申し込みフォーム https://u.kyoto-u.jp/form

「支援先」が「iCeMS基金」に なっていることを確認の上 お手続きください

銀行窓口やATMから

払込取扱票をご希望の方は、 郵送いたしますので 下記の問い合わせ先に ご連絡ください。

Yahoo!ネット募金から

Yahoo! JAPAN ID で ログインし 「寄付する」をクリック

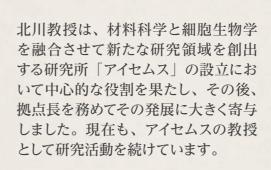
※領収証書が発行できないため、 税控除が適用されません。

※ご寄付者様の特定ができないため、 上記「ご厚意への感謝」の対象外と なります。

お問い合わせ先

E メール M innov@mail2.adm.kyoto-u.ac.jp

電 話 ♥ 寄付手続きについて > 075-753-9867 税制上の優遇措置など > 075-753-2210(京都大学基金事務局)



京都大学高等研究院アイセムス

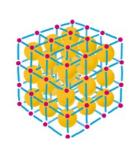
北川 進 特別教授

2025年ノーベル化学賞受賞

未来を変える「空間の化学」 多孔性金属錯体 (MOF) とは

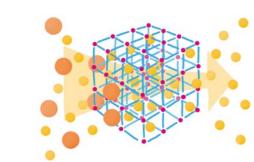
アイセムスの北川教授は、結晶構造の中に規則的に空いた「孔(あな)」に着目し、1997年にそのナノレベルの微細な孔にメタンや酸素のような分子を取り込むことができる多孔性金属錯体 (MOF) を発表しました。世界で初めて、壊れることなく機能する MOF を実現したこの成果が、北川特別教授のノーベル化学賞受賞へとつながりました。

北川教授が、荘子の「無用の用」の考え方に触発され、何もない「空間」そのものに価値を見出した MOF 研究は、材料科学の分野に大きなブレイクスルーをもたらしました。現在では、さまざまな機能を持つおよそ 10 万種類もの MOF が世界中で開発され、研究と応用の幅が広がり続けています。

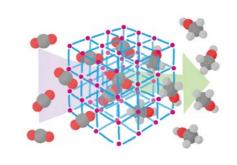

MOFの特徴

表面積が大きい デザインできる 大量の分子の吸着や反応を ねらった分子に対して機能する構造を 十小九一場 1面分の表面積 効率よく起こせる 自由にデザインでき、その可能性は無限 MOF 配位子 正四面体(4配位) 直線 (2 配位) 例:Ag+, Cu+ 簡単に作れる 金属 イオン 有機分子を含んだ溶液と 金属イオンを含んだ溶液を 混ぜるだけ 四角格子構造の MOF

MOFでできること


貯蔵

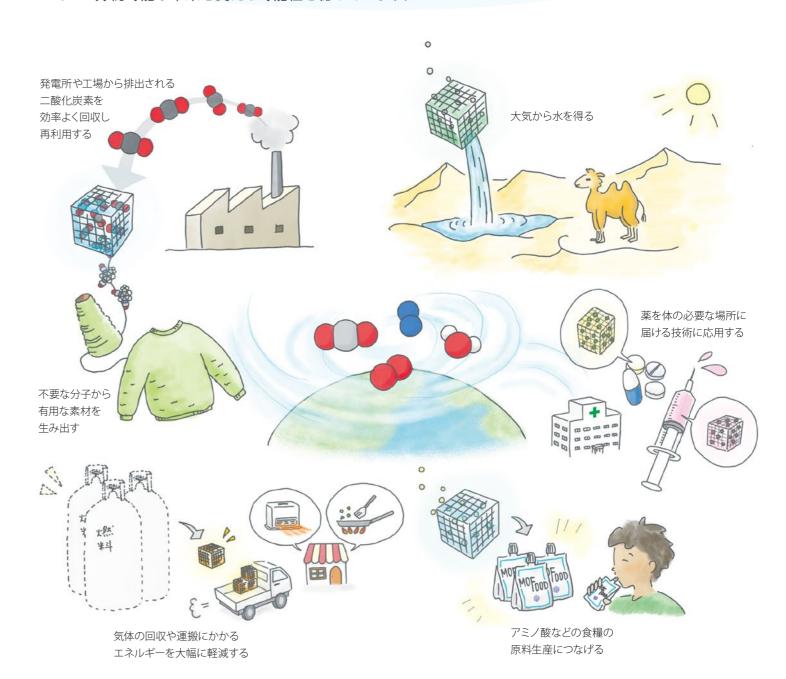
水素・メタン・二酸化炭素などを 安全に吸着


分離

混合物中から 目的の分子のみを吸着・分離

変換

吸着した分子を化学的に変化 (例: $CO_2 \rightarrow X9J$ ールなど)



サステナブルな循環型社会へ

MOFは、空気中の分子をとらえたり放したり、別の物質へと変換したりすることで、 資源やエネルギーを循環させる新しい仕組みを生み出す可能性をもっています。

地球の大気中には炭素、窒素、酸素、水素といった元素を含む分子が含まれており、 これらを活用・循環できれば、資源のあり方そのものが変わるでしょう。

二酸化炭素など不要とされてきたものを大気から取り出し再び活かす技術として、 MOFは持続可能な未来を支える可能性を秘めています。

誰もが平等に資源を手に入れられる、争いのない世界へ

空気は国境に関係なく、地球上どこにでも平等に存在します。

もし、空気を資源として活用できれば、資源をめぐる争いや地域格差のない世界を築ける。 国の大きさや資源の多寡には関わらない、平等な世界をきっと実現できる。

わたしたちが、無限の可能性を持つMOFで実現したい未来です。