Director Nakatsuji Addresses Plenary at World Stem Cell Summit in Pasadena

Prof. Nakatsuji is the only Japanese scientist to address the entire gathering during its 3-day annual conference in October.

Professor and iCeMS Director Norio Nakatsuji appeared as a plenary speaker at the World Stem Cell Summit 2011, taking place October 3-5 at the Pasadena Convention Center in California, delivering remarks on strategies for advancing regenerative medicine.

The annual conference, organized by the US-based nonprofit Genetics Policy Institute (GPI), was first held in 2005, and since then has annually attracted around 1,000 researchers, industry leaders, lawmakers, regulators, patient advocates, legal experts, investors, and philanthropists. Organizers this year included the California Institute for Regenerative Medicine (CIRM), the California Institute of Technology, and the Consulate General of Canada in Los Angeles. The iCeMS as well as the Harvard Stem Cell Institute (HSCI) were among the 120 organizations endorsing the event.

Fast, Cheap, & Accurate: Detecting CO₂ with a Fluorescent Twist

In findings published in Nature Materials, iCeMS scientists reveal a radically new and visual gas detection technique.

continues on page 2...

Diagram (above left) of a porous coordination polymer (PCP) infused with DDB, resulting in the polymer-framework becoming skewed. As CO₂ molecules are adsorbed (above right), the PCP straightens and fluoresces more brightly. This fluorescence can be seen in the photograph at right. (Courtesy Kitagawa Lab)
The iCeMS’ Expanding Global Network

New partners include MRC-CRM, JNCASR, MIPT, and Biocon.

The iCeMS global network of research partner institutions is expanding rapidly, with memoranda of understanding signed recently with the MRC Centre for Regenerative Medicine (CRM) at the University of Edinburgh, the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) in Bangalore, India, the Moscow Institute of Physics and Technology (MIPT), and the Medicinal Bioconvergence Research Center (Biocon) at Seoul National University.

While providing a framework for joint research projects, the MoUs also call for exchanges of researchers, joint hosting of symposia, possible satellite laboratories, and other cooperative efforts. In the case of Heidelberg University, an MoU has been signed with Kyoto University, and two joint symposia have been held, with a third in planning. The iCeMS already has a satellite at Gifu University, headed by Prof Makoto Kiso. The list of other ongoing partnerships includes the following institutions in Japan and abroad (pictured at right):

- California NanoSystems Institute (CNSI), UCLA, USA
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Germany
- National Centre for Biological Sciences (NCBS) and Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
- Purdue University Center for Basic and Applied Membrane Sciences (PUBAMS), USA
- Riken Center for Developmental Biology (CBDB), Kobe
- Wellcome Trust Centre for Stem Cell Research (CSRC), The University of Cambridge, UK

“Fast, Cheap, & Accurate” —continued from page 1

Detecting specific gases in the air is possible using a number of different existing technologies, but typically all of these suffer from one or more drawbacks including high energy cost, large size, slow detection speed, and sensitivity to humidity.

Overcoming these deficiencies with a unique approach, a team based at Kyoto University has designed an inexpensive new material capable of quick and accurate detection of a specific gas under a wide variety of circumstances. Moreover, in addition to being reusable, the compound gives off variable degrees of visible light in correspondence with different gas concentrations, providing for development of easy-to-use monitoring devices.

The findings, published in a recent issue of Nature Materials, describe the use of a flexible crystalline material (porous coordination polymer, or PCP) that transforms according to changes in the environment. When infused with a fluorescent reporter molecule (diotyrylbenzene, or DSB), the composite becomes sensitive specifically to carbon dioxide gas, glowing with varying intensity based on changing concentrations of the gas. Lead author for the paper was Dr Nobuhiro Yanai of the university’s Graduate School of Engineering.

“The real test for us was to see whether the composite could differentiate between carbon dioxide and acetylene, which have similar physicochemical properties,” explains Assoc Prof Takashi Umemura, also of the Graduate School of Engineering. “Our findings clearly show that this PCP-DSB combination reacts very differently to the two gases, making accurate CO2 detection possible in a wide variety of applications.”

In its natural state, DSB is a long, flat molecule, which emits a blue light. When adsorbed by the PCP framework, DSB molecules twist, causing the entire PCP structure to also become skewed. In this condition, the glow of DSB diminishes significantly.

“On this occasion we observed that the presence of CO2 causes the DSB molecules to revert to their flat, brightly fluorescent form, while also returning the PCP grid to its usual state,” adds Professor and iCeMS deputy director Susumu Kitagawa. “And importantly, these steps can be reversed without causing any significant changes to the composite, making possible the development of a wide variety of specific, inexpensive, reusable gas detectors.”

Additional details (including media coverage information) are available on the iCeMS website.

This work was supported by the Murata Science Foundation, ERATO-JST, a Grant-in-Aid for Young Scientists (A), and a Grant-in-Aid for Scientific Research on Innovative Area “Emergence in Chemistry” from MEXT. The synchrotron radiation experiments were carried out at BL22Hi in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal no. 2009B1320).
Kyoto SMI: Outreach to Gov’t and Industry

Nonprofit organization Kyoto SMI (“Smart Materials and Innovation”), founded with the mission of bringing the fruits of iCeMS research to industry and society, recently held its second outreach seminar at the Tokyo offices of Kyoto University.

Attracting over 70 representatives from government and industry, the seminar highlighted the work of Susumu Kitagawa, iCeMS Professor and Deputy Director, who together with his team of researchers is leading the world in the development of porous materials for storage, separation, and transformation of gaseous substances. One example of this research is illustrated in the joint work with Dr Takashi Uemura, as described on page one.

This most recent seminar, held on September 26, included presentations by Mr Masaki Matsuda, Deputy Director in the METI Chemicals Division, Dr Hiroshi Kajiro, senior scientist in the Advanced Technology Research Laboratories of Nippon Steel Corporation, together with Prof Kitagawa and four of the top scientists from the Kitagawa Lab. Kyoto SMI Chief Director Tsuneo Nakahara, Honorary Chairman of the Engineering Academy of Japan and former Vice President of Sumitomo Electric Industries Ltd, also spoke at the event.

The first Kyoto SMI seminar, held in Tokyo in February, focussed on innovative applications of stem cell research to regenerative medicine. iCeMS Associate Professor and head of the Innovation Management Group (IMG), Dr Shinitaro Sengoku, directs cross-sector efforts at the iCeMS and also serves on the Kyoto SMI board.
Navigating the Funding Labyrinth
Researchers receive training in applying for Kakenhi grants.

Grants-in-Aid for Scientific Research, commonly known as Kakenhi grants, are some of the most important sources of government funding available to researchers in Japan.

In addition to extensive information available on the website of the Japan Society for the Promotion of Science (JSPS), which administers the funding program, the iCeMS annually hosts a highly-popular seminar offering advice and counselling related to the preparation and submission of applications. These sessions are presented entirely in English.

At this year’s seminar, held October 5, a capacity crowd attended presentations by Administrative Director Shinji Tomita, Asst Prof Yong-Woon Han, Assoc Prof Mineko Kengaku, Prof Motonari Uesugi, and Funding Management office staff member Noriko Ohmura.

Science and Serenity in Yoshino
3rd retreat, to Nara, mixes heated discussion with relaxation.

A record number of institute researchers took part in the two-day event, held at a traditional inn deep in the mountains of Nara Prefecture. The World Heritage-designated area surrounding Mt Yoshino is renowned for its cherry trees as well as for its numerous temples and sacred sites, and the secluded locale proved to be ideal for focussing everyone’s attention on the dozens of posters and presentations on topics ranging from stem cells to DNA origami to porous materials.

Highlights of the retreat included a keynote lecture by Osaka University Prof Toshio Yanagida, an evening world map creation exercise, and an excursion tour to famous sites in the area.

Additional photos appear on the page opposite.
Navigating the Funding Labyrinth

Researchers receive training in applying for Kakenhi grants.

Grants-in-Aid for Scientific Research, commonly known as Kakenhi grants, are some of the most important sources of government funding available to researchers in Japan.

In addition to extensive information available on the website of the Japan Society for the Promotion of Science (JSPS), which administers the funding program, the iCeMS annually hosts a highly-popular seminar offering advice and counselling related to the preparation and submission of applications. These sessions are presented entirely in English. At this year’s seminar, held October 5, a capacity crowd attended presentations by Administrative Director Shinji Tomita, Asst Prof Yong-Woon Han, Assoc Prof Mineko Kengaku, Prof Motonari Uesugi, and Funding Management office staff member Noriko Ohmura.

Science and Serenity in Yoshino

3rd retreat, to Nara, mixes heated discussion with relaxation.

A record number of institute researchers took part in the two-day event, held at a traditional inn deep in the mountains of Nara Prefecture. The World Heritage-designated area surrounding Mt. Yoshino is renowned for its cherry trees as well as for its numerous temples and sacred sites, and the secluded locale proved to be ideal for focussing everyone’s attention on the dozens of posters and presentations on topics ranging from stem cells to DNA origami to porous materials.

Highlights of the retreat included a keynote lecture by Osaka University Prof Toshihito Yanagida, an evening world map creation exercise, and an excursion tour to famous sites in the area. Additional photos appear on the page opposite.

All photos ©iCeMS 2011
Kyoto SMI: Outreach to Gov’t and Industry

Nonprofit organization Kyoto SMI (“Smart Materials and Innovation”), founded with the mission of bringing the fruits of iCeMS research to industry and society, recently held its second outreach seminar at the Tokyo offices of Kyoto University.

Attracting over 70 representatives from government and industry, the seminar highlighted the work of Susumu Kitagawa, iCeMS Professor and Deputy Director, who together with his team of researchers is leading the world in the development of porous materials for storage, separation, and transformation of gaseous substances. One example of this research is illustrated in the joint work with Dr Takashi Uemura, as described on page one.

This most recent seminar, held on September 26, included presentations by Mr Masaki Matsuda, Deputy Director in the METI Chemicals Division, Dr Hiroshi Kajiro, senior scientist in the Advanced Technology Research Laboratories of Nippon Steel Corporation, together with Prof Kitagawa and four of the top scientists from the Kitagawa Lab. Kyoto SMI Chief Director Tsuneo Nakahara, Honorary Chairman of the Engineering Academy of Japan and former Vice President of Sumitomo Electric Industries Ltd, also spoke at the event.

The first Kyoto SMI seminar, held in Tokyo in February, focused on innovative applications of stem cell research to regenerative medicine. iCeMS Associate Professor and head of the Innovation Management Group (IMG), Dr Shintaro Sengoku, directs cross-sector efforts at the iCeMS and also serves on the Kyoto SMI board.

“World Stem Cell Summit” …continued from page 1

Clockwise from upper left: Kyoto SMI Deputy Chief Director and Mitsubishi Electric Corporate Advisor Kazushiro Tsukamoto, Dr Sengoku, Mr Matsuda, Prof Kitagawa, Dr Kajiro, Dr Nakahara, and Kitagawa Lab members Drs Takashi Uemura, Stephanie Diring, Satoshi Horiike, and Takafumi Ueno.

Above: the summit venue at the Pasadena Civic Auditorium

Below: a panel discussion featuring Prof Nakatsui

Below: Prof Nakatsui taking part in a roundtable discussion

Above: Prof Nakatsui meeting with Prof Rudolf Jaenisch of the Massachusetts Institute of Technology

all photos © iCeMS 2011
The iCeMS’ Expanding Global Network

New partners include MRC-CRM, JNCSAR, MIPT, and Biocon.

The iCeMS global network of research partner institutions is expanding rapidly, with memorandum of understanding signed recently with the MRC Centre for Regenerative Medicine (CRM) at the University of Edinburgh, the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCSAR) in Bangalore, India, the Moscow Institute of Physics and Technology (MIPT), and the Medicinal Bioconvergence Research Center (Biocon) at Seoul National University.

While providing a framework for joint research projects, the MoUs also call for exchanges of researchers, joint hosting of symposia, possible satellite laboratories, and other cooperative efforts. In the case of Heidelberg University, an MoU has been signed with Kyoto University, and two joint symposia have been held, with a third in planning. The iCeMS already has a satellite at Gifu University, headed by Prof Makoto Kiso. The list of other ongoing partnerships includes the following institutions in Japan and abroad (pictured at right):

- California NanoSystems Institute (CNSI), UCLA, USA
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Germany
- National Centre for Biological Sciences (NCBS) and Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
- Purdue University Center for Basic and Applied Membrane Sciences (PUBAMS), USA
- Riken Center for Developmental Biology (CDB), Kobe
- Wellcome Trust Centre for Stem Cell Research (CSCR), The University of Cambridge, UK

“Fast, Cheap, & Accurate” — continued from page 1

Detecting specific gases in the air is possible using a number of different existing technologies, but typically all of these suffer from one or more drawbacks including high energy cost, large size, slow detection speed, and sensitivity to humidity.

Overcoming these deficiencies with a unique approach, a team based at Kyoto University has designed an inexpensive new material capable of quick and accurate detection of a specific gas under a wide variety of circumstances. Moreover, in addition to being reusable, the compound gives off variable degrees of visible light in correspondence with different gas concentrations, providing for development of easy to use monitoring devices.

The findings, published in a recent issue of Nature Materials, describe the use of a flexible crystalline material (porous coordination polymer, or PCP) that transforms according to changes in the environment. When infused with a fluorescent reporter molecule (diotyrybenzene, or DSB), the composite becomes sensitive specifically to carbon dioxide gas, glowing with varying intensity based on changing concentrations of the gas. Lead author for the paper was Dr Nobuhito Yanai of the university’s Graduate School of Engineering.

“The real test for us was to see whether the composite could differentiate between carbon dioxide and acetylene, which have similar physiochemical properties,” explains Assoc Prof Takashi Uemura, also of the Graduate School of Engineering. “Our findings clearly show that this PCP-DSB combination reacts very differently to the two gases, making accurate CO2 detection possible in a wide variety of applications.”

In its natural state, DSB is a long, flat molecule, which emits a blue light. When adsorbed by the PCP framework, DSB molecules twist, causing the entire PCP structure to also become skewed. In this condition, the glow of DSB diminishes significantly.

“This occasion we observed that the presence of CO2 causes the DSB molecules to revert to their flat, brightly fluorescent form, while also returning the PCP grid to its usual state,” adds Professor and iCeMS deputy director Susumu Kitagawa. “And importantly, these steps can be reversed without causing any significant changes to the composite, making possible the development of a wide variety of specific, inexpensive, reusable gas detectors.”

Additional details (including media coverage information) are available on the iCeMS website.
Director Nakatsuji Addresses Plenary at World Stem Cell Summit in Pasadena

Prof Nakatsuji is the only Japanese scientist to address the entire gathering during its 3-day annual conference in October.

Professor and iCeMS Director Norio Nakatsuji appeared as a plenary speaker at the World Stem Cell Summit 2011, taking place October 3–5 at the Pasadena Convention Center in California, delivering remarks on strategies for advancing regenerative medicine.

The annual conference, organized by the US-based nonprofit Genetics Policy Institute (GPI), was first held in 2005, and since then has annually attracted around 1,000 researchers, industry leaders, lawmakers, regulators, patient advocates, legal experts, inventors, and philanthropists. Organizers this year included the California Institute for Regenerative Medicine (CIRM), the California Institute of Technology, and the Consulate General of Canada in Los Angeles. The iCeMS as well as the Harvard Stem Cell Institute (HSCI) were among the 120 organizations endorsing the event.

contents

iCeMS’ growing list of partner institutions worldwide 2–3
Researchers receive Kakenhi funding training 4
3rd iCeMS retreat held in Yoshino, Nara 4–5
Outreach to government and industry in Tokyo . 6
Hands-on classroom introduces high school students to science 7

Fast, Cheap, & Accurate: Detecting CO₂ with a Fluorescent Twist

In findings published in Nature Materials, iCeMS scientists reveal a radically new and visual gas detection technique.

Diagram (above left) of a porous coordination polymer (TCP) infused with DIB, resulting in the polymer framework becoming skewed. As CO₂ molecules are adsorbed (above right), the TCP straightens and fluoresces more brightly. This fluorescence can be seen in the photograph at right. (Courtesy Kitagawa Lab)

additional photos on page 3...